Factorization of disconjugate higher-order Sturm-Liouville difference operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Sturm-Liouville operators

Selfadjoint Sturm-Liouville operators Hω on L2(a, b) with random potentials are considered and it is proven, using positivity conditions, that for almost every ω the operator Hω does not share eigenvalues with a broad family of random operators and in particular with operators generated in the same way as Hω but in L2(ã, b̃) where (ã, b̃) ⊂ (a, b).

متن کامل

Sturm–liouville Operators on Time Scales

We establish the connection between Sturm–Liouville equations on time scales and Sturm–Liouville equations with measure-valued coefficients. Based on this connection we generalize several results for Sturm–Liouville equations on time scales which have been obtained by various authors in the past.

متن کامل

Sturm–liouville Operators with Measure-valued Coefficients

We give a comprehensive treatment of Sturm–Liouville operators whose coefficients are measures including a full discussion of self-adjoint extensions and boundary conditions, resolvents, and Weyl–Titchmarsh–Kodaira theory. We avoid previous technical restrictions and, at the same time, extend all results to a larger class of operators. Our operators include classical Sturm– Liouville operators,...

متن کامل

Inverse spectral problems for Sturm-Liouville operators with transmission conditions

Abstract: This paper deals with the boundary value problem involving the differential equation                      -y''+q(x)y=lambda y                                 subject to the standard boundary conditions along with the following discontinuity conditions at a point              y(a+0)=a1y(a-0),    y'(a+0)=a2y'(a-0)+a3y(a-0).  We develop the Hochestadt-Lieberman’s result for Sturm-Lio...

متن کامل

Spectral loci of Sturm–Liouville operators with polynomial potentials

We consider differential equations −y+P (z, a)y = λy, where P is a polynomial of the independent variable z depending on a parameter a. The spectral locus is the set of (a, λ) such that the equation has a non-trivial solution tending to zero on two fixed rays in the complex plane. We study the topology of the spectral loci for polynomials P of degree 3 or 4 with respect to z. MSC: 81Q05, 34M60,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1998

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(98)80023-0